Thickness From 1.2mm & 12.00mm of CFRP Composites, High Strength & Light Weight Strengthening System for Buildings & Bridges Structures & Timber Structures

- Build Strength® CF, is Composites Carbon Fiber of Pultrusion Oriented, continuous carbon fiber filaments which are held in position by a lightweight, Laminates of CARBON FIBER Build Strength® CF has robust handling and rapid wet-out characteristics which make it ideal for on-site strengthening of structural of buildings, bridges, beams, columns and marine structures. Additionally, CARBON FIBER Build Strength® CF is compatible with all commonly used adhesive systems which can be applied using a variety of wetout/adhesive infusion techniques.
- **Build Strength**® **CF**, is a Carbon Fiber Laminates, composite materials are finding applications for the reinforcement of new and the strengthening of existing structures. The materials excellent resistance to most of forms of corrosions and the ability to dissipate energy as required in earthquake scenarios make them eminently suitable for a wide rage of applications and they contribute significantly to lowering life cycle costs and increasing safety.

H Beam Profiles Type

Tape & SHS Profiles Type

Round Squash & Other Profiles Type

Carbon Fiber-Solid Rod

System Design Profile	Type of Fiber	Dim A		
		mm		
Solid Rod	Carbon Fiber	5.00		
Solid Rod	Carbon Fiber	7.50		
Solid Rod	Carbon Fiber	10.00		
Solid Rod	Carbon Fiber	12.00		
Solid Rod	Carbon Fiber	16.00		
Solid Rod	Carbon Fiber	30.60		
Solid Rod	Carbon Fiber	38.10		

Carbon Fiber-Solid Block Bar

System Design Profile	Type of Fiber	Dim A	Dim B	Dim C	Dim D
		mm	mm	mm	mm
Solid Block Bars	Carbon Fiber	6.40	6.40		
Solid Block Bars	Carbon Fiber	10.00	10.00		
Solid Block Bars	Carbon Fiber	16.00	3.50		
Solid Block Bars	Carbon Fiber	20.00	10.00		
Solid Block Bars	Carbon Fiber	30.00	15.00		
Solid Block Bars	Carbon Fiber	30.00	30.00		
Solid Block Bars	Carbon Fiber	38.10	38.10		
Solid Block Bars	Carbon Fiber	40.50	16.00		
Solid Block Bars	Carbon Fiber	50.00	30.00		

Carbon Fiber-Angle

System Design Profile	Type of Fiber	Dim A	Dim B	Dim C	Dim D
		mm	mm	mm	mm
Angles	Carbon Fiber	25.00	25.00	3.00	
Angles	Carbon Fiber	50.00	50.00	6.00	
Angles	Carbon Fiber	75.00	50.00	8.00	
Angles	Carbon Fiber	76.00	76.00	9.53	
Angles	Carbon Fiber	83.00	44.00	5.00	

Carbon Fiber-H Beam

System Design Profile	Type of Fiber	Dim A	Dim B	Dim C	Dim D
		mm	mm	mm	mm
H Beam	Carbon Fiber	8.00	25.00	7.00	
H Beam	Carbon Fiber	8.00	38.00	7.00	
H Beam	Carbon Fiber	20.00	15.00	2.00	
H Beam	Carbon Fiber	51.00	101.00	6.35	
H Beam	Carbon Fiber	53.00	50.00	7.00	
H Beam	Carbon Fiber	150.00	150.00	10.00	
H Beam	Carbon Fiber	200.00	200.00	10.00	

Carbon Fiber-U Channel

System Design Profile	Type of Fiber	Dim A	Dim B	Dim C	Dim D
		mm	mm	mm	mm
Channels	Carbon Fiber	50.80	25.40	3.20	3.20
Channels	Carbon Fiber	100.00	30.00	4.00	4.00
Channels	Carbon Fiber	100.00	40.00	5.00	5.00
Channels	Carbon Fiber	100.00	43.00	5.00	5.00
Channels	Carbon Fiber	100.00	50.00	4.00	4.00
Channels	Carbon Fiber	200.00	30.00	4.00	4.00
Channels	Carbon Fiber	200.00	50.00	4.00	4.00
Channels	Carbon Fiber	200.00	60.00	8.00	8.00
Channels	Carbon Fiber	300.00	30.00	4.00	4.00
Channels	Carbon Fiber	300.00	50.00	4.00	4.00
Channels	Carbon Fiber	400.00	60.00	6.00	6.00
Channels	Carbon Fiber	500.00	60.00	7.00	7.00

Carbon Fiber-Tape

System Design Profile	Type of Fiber	Dim A mm	Dim B mm	Dim C mm	Dim D mm
Таре	Carbon Fiber	16	2.00		

Carbon Fiber-Box Section

System Design Profile	Type of Fiber	Dim A	Dim B	Dim C	Dim D
		mm	mm	mm	mm
Box Section	Carbon Fiber	25.40	25.40	3.20	
Box Section	Carbon Fiber	38.10	38.10	3.20	
Box Section	Carbon Fiber	51.00	51.00	3.20	
Box Section	Carbon Fiber	51.00	51.00	6.00	
Box Section	Carbon Fiber	80.00	20.00	5.00	
Box Section	Carbon Fiber	100.00	100.00	4.00	

Carbon Fiber-Strip Laminates/Plate

System Design Profile	Type of Fiber	Dim A mm	Dim B mm	Dim C mm	Dim D mm
Strip Laminates/Plates	Carbon Fiber	50	1.70		
Strip Laminates/Plates	Carbon Fiber	76	1.20		
Strip Laminates/Plates	Carbon Fiber	76	2.50		
Strip Laminates/Plates	Carbon Fiber	76	4.20		
Strip Laminates/Plates	Carbon Fiber	76	8.00		
Strip Laminates/Plates	Carbon Fiber	80	1.70		
Strip Laminates/Plates	Carbon Fiber	100	1.20		
Strip Laminates/Plates	Carbon Fiber	100	2.20		
Strip Laminates/Plates	Carbon Fiber	100	8.00		
Strip Laminates/Plates	Carbon Fiber	124	4.50		
Strip Laminates/Plates	Carbon Fiber	140	10.00		
Strip Laminates/Plates	Carbon Fiber	206	4.50		
Strip Laminates/Plates	Carbon Fiber	395	4.00		
Strip Laminates/Plates	Carbon Fiber	600	3.00		
Strip Laminates/Plates	Carbon Fiber	600	12.00		

Build Strength® CF Mechanical Properties of Specification

Characteristic Material Properties - Pultrusion (1:1 Mat/Roving Construction)

Property	Symbol	Characteristic Value
Tensile Strength (longitudinal)	σ _{x,t,k}	2300 N/mm ²
Tensile Strength (transverse)	$\sigma_{\mathrm{y,t,k}}$	>463 N/mm ²
Tensile Modulus (longitudinal)	$\mathbf{E}_{\mathbf{x},\mathbf{t},\mathbf{k}}$	130 kN/mm ²
Tensile Modulus (transverse)	$\mathbf{E}_{\mathbf{y},\mathbf{t},\mathbf{k}}$	>35.1 kN/mm ²
Compressive Strength (longitudinal)	σ _{x,c,k}	980 N/mm ²
Compressive Strength (transverse)	$\sigma_{\mathrm{y,c,k}}$	485 N/mm ²
Compressive Modulus (longitudinal)	E _{x,c,k}	- kN/mm²
Compressive Modulus (transverse)	$\mathbf{E}_{\mathbf{y},\mathbf{c},\mathbf{k}}$	- kN/mm ²
Shear Strength (in plane)	$ au_{\mathrm{xy},\mathrm{k}}$	117 N/mm ²
Shear Modulus (in plane)	G _{xy,k}	2900 N/mm ²
Flexural Strength (longitudinal)	σ _{x,b,k}	1430 N/mm ²
Flexural Strength (transverse)	$\sigma_{\mathrm{y,b,k}}$	476 N/mm ²
Flexural Modulus (longitudinal)	$\mathbf{E}_{\mathbf{x},\mathbf{b},\mathbf{k}}$	95 kN/mm ²
Flexural Modulus (transverse)	$\mathbf{E}_{\mathbf{y},\mathbf{b},\mathbf{k}}$	47.5 kN/mm ²
Poisson's Ratio (longitudinal)	V _{xy}	-
Poisson's Ratio (transverse)	V _{yx}	-

Key Properties	High Tensile Modulus, High Tensile Strength, High Thermal Conductivity, Light Weight, Electrical Conductivity, Excellent Fatigue Resistance, Excellent Corrosion Resistance, Low Friction and Wear, Low Thermal Expansion, Resistance to High Temperatures, Good Creep and Damping Properties, Transparent to X-Rays, Solvent Free Working Environment
Uses	To Strengthening Reinforced Concrete & Timber Wood
Loading Increase	Increasing of Support Live Load in Building & Traffic Growth on Bridges Vibrating Machinery on Roof Slabs Heavy Machinery in Commercial Building
Change Design for Structural System	Dismantlement of Walls & Columns or Slabs & Beam Reducing of Buildings & Bridges Weight
Design or Construction Defects	Insufficient Reinforcements & Structural Depth

Application Method

Surfaces Preparation	Reinforced concrete surfaces shall be clean, structurally sound and free from foreign materials, contaminants, oily and other debris. Concrete surfaces shall not more than 4% moisture content and the temperature of the substrate must be at least 3 °C which above, the current dew point temperature.
	Reinforced concrete surfaces shall be clean, structurally sound and free from foreign materials, contaminants, and oily and other debris. Concrete surfaces shall not more than 4% moisture content and the temperature of the substrate must be at least 3 °C which above, the current dew point temperature.
	For filing surface irregularities such as blowholes, honeycombs & etc. Please hacking or cutting – off unloose concrete, air blowing those dust, and clean all concrete surfaces, keep over night for dry.
	Using patching method of Polymer Cementitious Mortar or pumping of High Strength Cementitious Grout. But only for concrete surfaces cracks 0.25mm, must be injected with Low Viscosity of Epoxy Resin for filled. Using high pressure Air-Less Pump for injecting and penetration into structural crack lines, to achieve load bearing and adhesion bonding system.
	Once patching, pumping or injecting works have been done, before laying Carbon Fiber Fabric Sheet, all surfaces must be Hammer Test for Polymer Cementitious Mortar, High Strength Cementitious Grout and Pull-Off Test for Cracks Lines. For achievement of strength requirement please consult your local Engineer.
Over Head Application <u>Vertical Application</u>	Applied on Over Head or Vertical Beam and Slab, either Primer, Adhesive & Resin, Waste of materials are approximately 15%.
Mixing of Primer	Use a low speed (300 to 500 rpm) electric drill fitted with a paint mixer or a wing type paddle Pour one unit of Part A & B into drum and mix for at least 3 minutes until the mix is uniform and free. Note: Once been mixed, the Primer must be applied within 30 minutes of Pot Life.
For Uneven Surfaces <u>Mixing of Paste Putty</u>	Use a low speed (300 to 500 rpm) electric drill fitted with a paint mixer or a wing type paddle. Pour one unit of Part A & B into drum and mix for at least 5 minutes until the mix is uniform and free. Note: Once have been mixing, the Paste Putty must be applied within 60 minutes of Pot Life.
Easy Installation	The easy to use Glass Fiber FRP system components assure fast, user friendly installation. A complete system is installed in only four (4) steps to properly prepared surfaces within appropriate working conditions.

System Recommended Use Resin Component

Epo Adhesive Strip is Epoxy Solvent Free Two Component of Part A & Part B. Sag Resistance until 6mm thick. Up to 15 Mpa **Shear Strength** Up to 4 Mpa **Peel Strength** Suitable for applied on Over Head or Vertical Surfaces

1. Roll "Epo Bond Primer"

Apply **Epo Bond Primer,** at rate applied 0.20 kg/m2 to 0.30 kg/m2, is a low viscosity of **Primer Resin** that can be applied using a roller. (Wait for $\frac{1}{2}$ to 1 hours curing)

2. Apply "Epo Adhesive Strip"

Apply **Epo Adhesive Strip**, at rate applied 0.34 kg/meter linear to 1.5 kg/meter linear, paste adhesive is a high solids, non sag paste Epoxy Based or Polyurethane Based material that is applied using a Spatula Tools to level concrete surfaces. **Note: Min of Thickness of Adhesive Shall be at least 0.5 mm**

(Curing time: 1/2 hour to 4 hours depend of whether temperature)

3. Apply Carbon Fiber of "Build Strength® CF"

Within the open time of the adhesive, place immediately the **Build Strength® CF Profile** onto the adhesive surfaces, using roller or other tools to press the laminates into the adhesive until is forced out on both sides of the laminates.

Before the adhesive curing. Immediately remove surplus adhesive on both sides

Clamp The **Build Strength® CF**. The joint component should be assembled and clamped as soon as the Adhesive has been applied. An even contact pressure throughout the joint area will ensure optimum cure.

Important 1:	While the information and data sheet contained in this promotional literature are presented in good faith and believed to be reliable, they do not constitute a part of our terms and conditions of sales unless specifically incorporated in our Order acknowledgement. Nothing herein shall be deemed to constitute a warranty, express or implied, that said information or data sheet are correct or that the products described are merchantable or fit for a particular purpose, or that said information, data sheet or products can be used without infringing patent of third parties.
Important 2:	LaMaCo Malaysia products are not guaranteed against defective materials and manufacture & are sold subject to its standard Terms & Conditions of sale, copies of which may be obtained on request. Whilst LaMaCo Malaysia endeavors to ensure that any advice, recommendation, specification or information is accurate and correct, it cannot- because it has no direct or continuous control over where or how its products are applied – accept any liability either directly or indirectly arising from the use of its products, whether or not in accordance any advice, specification, recommendation or information or information or information given by it.
Health & Safety	Some of the components of this product may be hazardous during mixing and application. Please consult the relevant Health & Safety Data Sheets, available from LaMaCo Malaysia on request and sent with each delivery.